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SUMMARY

Theoretical results are obtained, by means of the linearized theory,
for the surface—velocity—potential functions, surface~pressure distribu—
tions, and stability derivatives for various motions at supersonic speeds
of thin flat rectanguler wings without dihedral. The investigation
Includes steady and accelerated vertical and longitudinal motions and
steady rolling, yawling, sideslipping, and pitching for Mach numbers and
aspect ratlos greater than those for which the Mach line from the leading
edge of the tlp section intersects the trailing edge of the opposite tip
section. The stability derivatives are derived with respect to principal
body axes and then tremsformed to a system of stability axes. In the
case of yawing, a treatment for the Infinitely long wing which takes
account of the spanwise variation in the stream Mach number is extended
to the finite wing, and a plausible, although not rigorous, solution is
obtained for the wing tip effects.

The results for this investigation showed that positive yawing at
supersonic speeds may produce a negative rolling moment in comtrast to
the behavior at subsonic speeds where a positive rolling moment would be
produced. The attainment of supersonic speed should produce a signifi—
cant change In the positive direction of the yawing moment per unit
rolling velocity. The results also indicate that unsteble tendencies
are produced by vertical accelerations if

wvhere A 1is wing aspect ratio and M 1s stream Mach number. '
INTRODUCTION

Recent developments in supersonic airfoil theory (references 1 to 4)
have led to the calculation of many of the supersonic stability derivatives
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for various plan forms. In references 5 to 8, various theoretical super—
sonlc stability derivatives for small disturbances are presented for
thin flat wings of delta plen form. In reference 9, the supersonic
damping due to rolling is given for triangular, trapezoldal, and related
plen forms.

In the present paper the methods of references 4, 10, and 11, which
are based on the linearized theory for a uniform stream Mach number, are
used to derive the supersonic surface—velocity—potential functions for
thin £flat rectangular wings without dihedral in steady and accelerated
vertical motions and steady rolling, sideslipping, and pitching motioms.
The potential functions that are obtained are then used to derive formulas
for the pressure distributions and the stabllity derivatives for the
foregoing motions and also for steady yawing. In the case of yawing, a
simple treatment given In reference 7 for the Infinitely long wing, which
takes account of the spanwise varlation in stream Mach number associated
with yawing, has shown that the assumption of a wniform Mach number is
far from adequete to describe the compressibility effects. Tnls treat—
ment 1s sxtenled herein in order to evaluate the wing tip effects for the

yawing finite—-span wing.

The steady motlions that are treated herein are assumed to glve small
deviations from the undlsturbed flight path and the accelerated motions
are assumed to have small accelerations. Theoretical results based on
this assumption for steady motions have, in general, been found to be
reliable; however, the reliability of such results for unsteady motiomns
is as yet unverified. The results presented herein cover a range of
Mach number and aspect ratio greater than that for which the Mach line
from the leading edge of the tip section Intersects the tralling edge of
the opposite tip section.

SYMBOIS

X,y ~ rectangular coordinates (see fig. 1)

U, Vg induced flow velocities along x— and y—axes, respectively

1 coordinate in flight directlion if this direction is inclined
to x-axis

u,v,w incremental £light velocities along x—, y—, and z—axes,
respectively (see fig. 2)

u derivative of u with respect to tlms

w accelerated vertical motion

v undisturbed flight velocity
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v local flight veloci'i:y after dlsturbance; used to indicate
inclination of flight direction to x-exis (see fig. 1)

P,q,r angular velocities about x—, y—, and z—axes, respectively
(see 'fi.g. 2)

a speed. of sound

M streem Mach number (V/a)

B=yMe -1 |

©° Mach angle Gin—l ﬁ)

o wing angle of attack in steady flight, radians (w/V)

ot local inclination of ailrfoil surface wlth respect to free

W
stream, radiens <V " u>

a derivative of o with respect to time
t time following disturbance, seconds
B angle of sideslip, radians (v/V)
c chord
h wilng semispan
b wing span
S total wing area
Sy region of integration over portion of wing surface (see fig. 3)
A aspect ratio <% or :D_>
c c
Xcg distance of origin of stability axes from the midchord point,
measured along x—exls, positive ahead of midchord point
o} mass density of air
¢ disturbance~velocity potential on upper surface of airfoil
E,n auxiliary variables which replace x and y, respectively

(see £ig. 1)
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indicates & trensformation of origin of x— and y—exes or &-—
and n—exes from leading edge of center section to leading
edge of tip section (yg =y —h on right half-sing;
Yo = -y —h on left half-wing)

pressure difference between lower and upper surfaces of alr—
foll, positive in direction of 1ift :

nondimensional coefficient e@fessing ratio of pressure
difference between lower and upper surfaces of airfoill

to free—gtream dynamic pressure e _

a2

2

constant given by equation (9)
induced suction force on wing tip per unit length of +tip

forces pa:;a.llel to x~, y—, and z-exes, respectively (see
fig. 2 ’

X
longitudinal—force coefficlent ( ——
oves

lateral—force coefficient (-L>

PyRg
2

Z
vertical—force coefficient [——

Pyes
2

Skin—friction drag

pve
V=S
2

skin—friction drag coefficient

moments about x—, y-, and z—exes, respectively (see fig. 2);
M 1s also used to refer to Mach number

rolling-moment coefficient 5
—V=5Sb
2v2

piltching-moment coefficient
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Cp yawing-moment coefficient R
SV2Sb

Subscript:

1,2 contributions of normal pressures and skin friction, respectively,
to G, ; also used to indicate onent parts of C ]
°Cnr’ 80 use o) cate comp D 8 ZB’CZa.
Cmd, CZu, and cmu

Superscript:

W,D contributions caused by vertlical motion and rolling motiocn,
respectively

: Whenever p, q, T, B, o, U, &, and U are used as subscripts, a
nondimensional derivative is indicated and this derivative 1s the slope

3c, 3Cy

through zero. For example, C; = s Cm = 5
Y 3 Do) |. ) q qc
w =

p—0 av g—>0

[ 3c

1 oC o)
v B C I N I
’_> ‘ B B—>0 : */ a—>0
2V
- r—>0
- .
OCy Cy oCqy
Cmu= —_— > Cmﬁ= —g— 5 and Cmi:l= ] .
8(%) 3(‘2; B(‘.l_c 4
] w0 @—>0 v u—90

Unprimed stabllity derivatives refer to principal beody axes;
primed stability derivatives refer to stabllity axes.
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ANATYSTS

General Concepts

The coordlnate axes and the symbols used in the analysis of the
rectangular wing are shown in figure 1. The derivation of the formuilas
for the surface—velocity—potential functions, pressure distributions,
end stability derivatives is made initially with reference to principal
body axes which are fixed in the wing with the origin at the midchord of

the center sectlon (%,0,0). This system of axes is shown in figure 2(a).

The transformation of these stability derivatives to a system of stebllity
axes (fig. 2(b)) is discusssd in the section entitled "Results and
Discussion."

The stability derivatives are determined from integrations of the
forces and moments over the wing. .For vertical and pitching motions
which yield equal end opposite suctlion forces along the edge of each
wing tip, the only resultant forces and moments acting on the wing, if
skin friction 1s neglected, are those caused by the pressures on the air—
foll surfaces. These pressures are obtalned from the familiar Bernoulli
equation. In rolling, yawling, or sldeslipping, however, unbalanced
suctlon forces which produce lateral forces and yawlng moments are
induced along the wing tips in addition to the forces and moments
resulting from the pressure normal to the wing surface. The subsequent
analysis for the calculation of the stability derivatives is then
resolved to a determination of the pressure distribution normal to the
surface and the unbalanced suction forces along the wing—tip edges.

The pressure difference bstween the upper and lower surfaces ‘
(positive upward) at any point on ths wing is determined fram the
general Bermoulli equation for emall disturbances as

AP=~29<V‘-§g+§-§ : (1)

where V! 7s the local Tlight velocity and 1 refers to a coordinate
measured in the flight direction. The.term J@/dt expresses the effect
of any unsteadiness in the flow. The velocity potential ¢ in equa—
tion (1) must be determined so as to setisfy the linearized partial—
differential equation (with time dependency if the motion is unsteady)
of the flow and the boundary conditions assoclated with the particular
motion under consideration. Thus, the potential must glve streamlines
that are tengent to the airfoll surface and a pressure field that is
continuous at all points exterior to the wing. Equation (1) shows that
the pressure distribution on the wing is determined when the surface—
potential function is found.

The method of reference 4 is in general adaptable to the problem
of obtaining the surface—potential function ¢ in supersonic flight to
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meot boundary conditions assoclated with small steady motions, such as
vertical motions, rolling, sideslipping, and plitching. The method 1s

an extension, to include tip effects, of the work of Puckett and others
which uses the superposition of elementary source solutlions to obtain
the potential function. In cases where a polnt on the wing 1s Influenced
by two or more mitually interacting extermal fields, the interaction
introduces difficulties in the solution for the surface potential. (See
also reference 12.) If any point on the wing is influenced by only one
Independent extermal field, however, the potential functlion in a region
affected by the wing tip may be obtained by integration of elementary
gsource solutlions solely over an approprlate area of the wing. The
strength of these sources 1s shown to be a function only of the local
slope of the alrfoil surface with reference to the free—gtream direction.
Inasgmuch as the slope of the alrfoll surface with reference to the free—
gstream direction is known for a given motion, the distribution of sources
1s known and, consequently, the distribution of the surface-potential
function is determined by an Integration of the elementary source solu~
tions over an appropriate area of the wing.

As applled to the rectangular wing at supersonic speeds, the fore—
going method of reference 4 for cme independent external field is valid
ag long as the foremost Mach wave from ome tip does not intersect the
opposite tip, that is, for Mach numbers end aspect ratios for which
AB 2 1. For this case, the potential at a point on the top surface of
a thin flat wing may be determined by means of equation (1%) of reference U
and is as follows: .

#(x,75) = %[éw —— (2)
Jix = 82 ~ B(y, — 1, )2

where o' represents the local angle of atback of the airfoil surface
at the polnt (g,na). Figure 3 shows a typical region 8§ for determining
the potential at a point (x,ys) in a rectengular wing. The figure
shows the boundaries S, over which the Integration must be performed,.
for a point (x,ya) which 1s affected by the wing—tip region. If the
point (x,ys) 18 located at or inboard of the foremost Mach line from
the tip, this point is unaffected by the tip region and S, 1s bounded
by the leading edge and the Mach foreconse from (x:,ya). Suppose that the
surface potential @(x,y) has been obtained from equation %2) or by

same other method, then the differentiation of @ with respect to the
coordinate in the free—stream direction determines the pressure distribu—
tion by means of the Bernoulli relation, equation (1).

Ths expressions for determining the surface potential and the pressure
coefficlent for unsteady motions are discussed in the section entitled
"Dorivation of Formulas."
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Derivation of Formmlas

The subsequent derivation of formmlas for the various motlons will
involve first tho determination of distributions of surface potential and
then the determinatian of surface—pressure distributions and any
unbalanced suction forces along the wing tips. The integrals required
for these derivations and also those requlred for the stabllity derivatives
are Integrable elther directly or after reduction by parts by means of
standard formilaes such as are glven In reference 13; hence, the detaills
for the integrations are not shown. In the operations involving factoring
from radicals, care must be used to preserve the correct sign of the
factors; for example, if

Teo< O

V7.2 = (5,07 = —,

.

For brevity, the final formulas are ammitted from the derivations and
appear only in tables at the end of the paper. Thus, the distributions
of ¢ and Acp are swmerized in teble I, and the stability derivatives
are summarized in teble IT.

All the derivaetlions are made specifically for a wing for which
AB 2 2, that is, for which the foremost Mach wave from & tip does not
intersect the remote half-wring. The formulas in table I for the
potential ¢ and pressure coefficient Acp that are obtained for

AB2 2 can be applied to wings in which 1< AB < 2 by using the
principle of symmetry and superposing separately each tip effect at the
point under consideration to the value obtalned for the infinitely long
wing. A conslderation of this superposition principle for the rectanguler
wing shows, however, that the stabllity derivatives which are obtained
for AB 22 apply as well to wings for which AB > 1. A more detailed
description of table IT is glven in the section entitled "Results and
Discussion."

Verticel, Pitching, and Longitudinal Motions

Derivatives —CZa and, —Czq.— For steady pitching motion ebout a

laterel axis through the midchord point, the local slope of the airfoil
surface with respect to the free-stream direction is

- <

where o 1s the angle of attack in the absence of pitching. TIn order to
obtain the potential distribution, this value of o' 1s substituted into
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equation (2) and the double integration for the veriables ¢ and g

is performed between the limits indicated in figure 3. The pressure
coefficient is then obtained from equation (1) for steady motions as

_ bk _nof
Aop = F U —ﬁ:g; (3)

These pressure coefficients are then differentiated with respect to a
and gq. The integrations of the respective distributions of Acp over

the wing and conversion to nondimensional units then give the deriva—
tives —sz and -Cy .
a

Derivatives and .~ Derivatives C and C are obtalned
g g o, g
directly from the pressure—coefficient distributions for angle of attack
and pitching, thus

e ir Sy el e,

where Acp for engle of attack and pltching is given in table T.

Derivatives CXu, and Cy .— At supersonic speeds the resultant
q

pressure force on a rectangular wing of zero thickness acts normal to the
surface as there 1s no suction at the leading edge. Thus, the forces

in the x—direction arise solely from skin friction. On the assumption
that the skin friction is independent of o and g, the derivatives CXE

and CXq are zero.

Derivatives —Czu, Cmu’ and _ch"" The derivative —CZ_Ll is obtained
from the equation

u—0
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The function _CZG. is obtained from teble II. TIts dependence on the

incremental flight velocity U 1is Indlcated by giving B 1n the

. Then

2 .
form /-(V—tl)-—-— 1 and o' in the form
a2 V+u

bw(V + u) 5 1

)
PEE | e
; )

a

< (=

~z,

u—>0

The derlvativse cm11 is obtained from the equation

M= alCy £ (V+ u)2sc
Then

O, = § Sl on 0]

The functlon Cma, is obtalned from table IT, where 1ts depemdence

on u 1is indicated by writing o' and B 1in the same form given
previously for the derivative —Czu. Then

w(V + u)

(V + u)2 }
T L -

u—0

Q

]
e
|V
¥ |

The derivative —Cxu results from gkin friction and is obtained

from the equation

X = CDOg(V+ u)QS cos a
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—ox ® %-ZEE‘.DO(V + u)Q]

u—>0

Accelerated Motions

For accelerated motions in the verticael plane of symmetry, the
pressure cosfficient from equation (1) is

_hfog 19¢
Aop =g ax+vat

s/

()

The surface potential @ in equation (4) for unsteady motions of thin
alrfolls in two—dimensional supersonic flow has been derived in refer—
ence 14. In reference 10, the methods of references 4 and 12 for steady
flow at supersonic speeds are extended 1n order to determine solutions

for the surface potential and pressure coefficlent for unsteady motlions

in three—dimenslonal flow. In the present analysis the solutions obtained
iIn reference 10 will be utllized to calculate the derivatives In vertical
motions with small constant accelerations.

Derivatives -Gy, , C and . .— The surface potential Tor
26,

m(.x',
uniformly accelerated motion as obtained for the region within the tip
Mach cone i1s (reference 10, equation (31))

#x,70) = 5z | | Vet + M2d<233r::8 =) \[—ya@a + %)

M2éx2 oy B .
+ <To'cbx-— 0m;>cos1_l< Z +J> (5)
2B X

In converting from the notation of reference 10 for a rectangular 'wing
to the present notation, the following transformations are made: U =7V,

. .M M
En:or,,ccso, B=B,c=%, kl=l,u2=vw=£(x+yaB),uw=§(x——yaB),'
Uo Acp
E:l,and CP=——2—.
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In order to obtain @ 1in the region between the tip Mach cones, Vg In
equation (5) is set equel to —§ and, therefore,

G:bx -~ (6)

The pressure coefficient Acp  contributed by the vertical accelerating

motion is obtained by partial differentiation of @ (equations (5) and (6))
with respect to x and T, by letting + = O, and then by substituting
these expressions for B¢/Bx and J3@/dt im eqjlation (k). This process
yields in the reglon within the tip Mach cones

bdl<l

kg | x a1 (yeB ) 2\/ x
AcP(x,}'a_) = E F cos (T + 1) + 2B “ya(ya. + ﬁ) (7)
and in the reglon between the tip Mach cones v
hex
r =3 (8)

Equations (7) and (8) correspond to equation (33) of reference 10,
after the appropriate transformations noted previocusly for ¢ are made.
The derivatives —CZ(J. and (.‘.mcL are then obtalned by in'beg'ra.tion of

the corresponding Acp—distributions and conversion to nondimensional
units. The derivative CX& is shown to be zero by the use of assumptions

gimllar to those noted previously for GXQ

Derlvatives —CZﬁ_’ Cmﬁ.’ and _CX.,'l'_ For small accelerations along the

Plight path, the potential will remain substantially unchanged. The
Increments in pressure caused by these accelerations, therefore, are
assumed to be negligible, and the derivatives —CZﬁ’ Cmﬁ: end _CXﬁ are

approximately zero.

Rolling

Derivetive C-LP.-— In steady rolling motion with angular veloclty p,
the local slope of the alrfoil surface with respect to the flow direction is

. _pq_Plng + 1)
a A
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~

In order to obtain the potential distribution this value of o' is
substituted into equation (2) and the double integration for the
variables € and =n, 1s performed between the limits indicated in
figure 3. The pressure coefficient 1s then obtained from equation (3).
The derivative C.LP is obtained by integrating the moments of the

Bernoulli pressure distribution for rolling given in teble I and by
converting this result to coefficient form.

Derivatives CIP and Cnp'_ In a rolling motion, the lateral force
and yawing moment relative to body axes result entirely from suction
along the tips. These suction forces may be evaluated by applying a
method suggested in reference 15 for incompressible flow and modified for
compressibility effects In reference 3. Thus, if the induced surface
veloclty normal to the wing tip is expressed as

(9)

where G 1s a constant, then the suction force per unit length of tip is

Fs = :I'(DG-2
(A more general expression for edge suction that is still valid when the
edge 1s Inclined to the stream is given in reference 3 and recast in
reference T.)

Consider the induced surface velocity normael to the tip of a wing
rolling with an initial angle of attack «. This velocity is

where the superscripts w and p refer to the potentials obtained for
a vertical motion and a .rolling motion, respectively. From table I

W Va o [2v.B
¢ (X,Ya) = ?% cog ™+ (_;a_ + J> + 2”[ya(ya + %)
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and partial differentiation of @ with respect to y ylelds

w (N [N v E
(vo) =<—a-y'> =<§ =-T—1—;a§ (10)

where y, < O. Very near the tip, —y,~—>0 and

W

W ) 2Va /x

() =(L) - 2= (11)
oy, TV Ta

The potential in rolling @ is given in table I. By partial differentia—

tion of ¢p with respect to y and then by letting _-ya—)o, there

results
x

h — —
P_§¢___Q_Q X 3B , .
(vo) “w.- <V = (12)

The resultant induced surface velocity mormal to the wing tip as
~y,—>0 18 obtained by adding equations (11) end (12). Thus

X
(o)"P = -2 & ot F:—ED—VG (13)
a

The plus signs before p and V refer to the right wing tip and the
negative signs refer to the left wing tip.

Very neer the wing tip, equation (13) has the same form as equa—
tion (9) and, therefore, the total suction force per unit length along

the wing tip is

Fg = 1pGF = :;%X[I@(h - %}2 + @Va@ —‘%> + VQG?J (1)

8pxpVa x

In equation (14) only the term =+ h — —3-g> will give rise

to a lateral force and a yawing moment which are obtained by integrating
this term along the wing tips. These forces and moments are then
converted to nondimensional form to give the derivatives CYP and Cn'P
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Sideslip

The pressure coefficlent obtained from equation (1) for steady

flight is
L 9
Aop = ;3'8%

where V' and 1 are measured in the flight direction. If sideslip
occurs the flight direction 1s inclined relative to the x—axis by the
gldeslip angle PB. The rectangular wing in sideslip, therefore, becomes
equlvalent to a yawed wing with the leading wing tip raked out and

the trailing wing tip raked in. If the Kutta—Joukowskil condition at the
tralling wing tip 1s neglected, the potential function for the yawed
rectanguler plan form may be obtalned by the method of reference 4. In
reference 11, the method of reference 4 is extended in order to obtain
solutions for edges for which the Rutta—Joukowsk! requirement must be
satisfled. \

Physical considerations suggest, however, that for small sideslip
angles, the actual flow for typically rounded wing tips would in general
be unlikely to conform to the Kutta—Joukowskl condition along the trailing
wing tip. The edge suction for a lifting wing arises because of the flow
from the bottam surface to the top surface around the side edge. This
flow may be presumed to go around eny boundery leyer that may be present.
The local boundary layer thus experlences the edge suction. Rough
calculations suggest that the edge suction per unlt area ls approximately
constant from the leading edge to the point of maximim profile thickness,
and then Increases rapldly from the- point of maximm thickness to the
tralling edge. The pressure gradient is therefore favorable and the
flow at the side edge 1s not expected to separate. This condition should
persist for small or moderate emounts of sideslip until the additional
pressure Increment caused by sideslip produces a strong adverse pressure
gradient. Further theoretical and experimental investigation is required
to obtain quentitative results regarding these phencmena. On the basis of
the foregoing considerations, it will be assumed in the present analysis
that the RKutta—Joukowski condition is not satisfied along the trailing
wing tip. The effect of satisfying the Rutta—Joukowski condition alang
the tralling wing tip in sideslip is discussed in thls analysls and also
in the section entitled "Results and Discussion."”

Derlivative CZB.— The potentlal corresponding to a thin rectengular

wing at an angle of attack and a finite angle of sideslip may be obtained
from reference 4, equation (20). The corresponding pressure distribution
may be obtained from reference 11, appendix C, equation (Chk). These
solutions from references 4 and 11 were simplified to the approximate
form for small angles of sideslip (B << 1) end converted to the present
notation with respect to axes shown In figure 1. The distributions

for @ end Acp caused by combined vertical motion and sideslip are
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given in teble I. The regions for which these expressions for ¢ and Acp

are appliceble are bounded by Mach lines with respect to the stream
velocity V! which 1s Inclined to the x—exis by the sidesllp angle B.
As noted previocusly, these expressions do not satlisfy the Kutta—Joukowskl
condition along the tralling wing tip. As indicated in reference 11,
however, the Kutta—Joukowskl condition along the trailing wing tip merely
cancels the radical term in the expression for Acp within the Mach cone

from the trailing wing tip.

A consideration of the foregoing Acp-distributions indicates that

as a result of sideslip the 1ift within the Mach cone from the leading
wing tip 1is Increased, whereas the 1ift within the Mach cone from the
tralling wing tip is decrea.sed. A rolling moment is thereby produced.
Furthermore, as a result of sideslip, the Mach lines are shifted toward
the trailing wing tip, and thils shift contributes an additional rolling
moment. The magnitude of the rolling moment caused by sideslip is given
in table IT in terms of the nondimensicnal derivative C)za .

p—0

Derivatives CYB and. CnB.- The derivatives CYB and Cnﬁ can result
solely fram suction forces which are induced at the wing tips. These suctlon
forces for sldeslipping motlion were evaluated by & method similar to that

described previously for obtaining CYP and CnP. The treatment for sideslip

wasg based on the conclusion, noted previously, that the Kutta—Joukowskl
condition is mmlikely to be satisfied for typically rounded wing tips at
small angles of sideslip. The potentlial ¢ for determining the induced
velocity normal to the wing tip was obtained from table I. The resultant
lateral force and yawlng moment are given 1n nondimsnsional form in table II.

Yawing

In yawing flight, the stream velocity varies linearly along the span.
This effect introduces veristions of both dynsmic pressure and compressl—
bility effects along the wing span. The surface potentlial as expressed In
equation (2) satisfies the linearized potential equation for & uniform
streem Mach number, but 1s inadequate to account for the compressibility
effects assoclated with a spanwise variation of stream Mach mmber. (See
reference T.) The case of the trapezoidal wing wilth tips cut off along
the Mach lines (raked tips) wes analyzed in referemce 7. It was shown
that the pressure distributlion could he obtained by application of the
Ackeret two—dimensional theory modified by using the locel Mach number at
each spanwlse station as affected by the yawing. Inclusion of the' span—
wise variation in Mach mumber was demonstrated to have a profound effect
on the pressure distribution.




NACA TN No. 1706 17

The addition of sultable triangular tips to the aforementioned
trapezoldal wing converts 1t Into a rectangular wing. The added tips
lie wholly within the tlp Mach cones and thus their addition does not
alter the pressures on the trapezoidal portiocns. A rigorous solution
for the pressures on the tip portions cannot yet be demonstrated. However,
an expression that appears plausible has been obtalned. This pressure
distribution for the tip portions- is derived by superposing on the
Ackeret pressure distribution, as modified by local Mach number, an ¢
appropriate function which fulfills the boundary condltion for no
pressure discontinuities in the region exterior to the wing. This function
thus represents the effect of the wing cut-off and is designated hereln
as the tip effect. The pressure difference AP at any point according
to the Ackeret theory based on local Mach number is (reference 7):

(15)

_ 2p(V — rylw 2pwV<L+ry>
e

Equation (15) shows that -the pressure distribution for an infinitely
long wing which has a steady yawing velocity » and vertical velocity w
18 expressed by two components. One of these compoments 1s proportiocnal
to w, is constant, and gives the pressure distribution contributed by
an angle of attack in stralght flight. The other component is proportional
to wr, glves a linear antisymmetrical distribution with respect to 'y,
and expresses the pressure dlstribution contributed by yawing.

It will be recalled that the solution for steady rolling, treated in
a preceding section, resulted likewise In a pressure distribution
proportional to y in the reglon between the tip Mach cones. The pressure
distributioms contributed by rolling end by yawing are thus proportional
in the reglon between the tip Mach cones. The wing cut—off is effected by
canceling the dlsturbance pressures outboard of the desired tip location
by means of a function that satisfies the boundary conditions on the wing.
Because the two pressure digtributlons to be canceled correspond in the
yawing and rolling cases, the Incremental pressure functlon or tip éffect
for each case evidently must reduce to forms which will have the same
factor of proportionality in the entlre plane of the wing outboard of
the tip. It seems reasonable to assume, therefore, that for esmall yawing
motlons the two pressure dlstributions wlll also have very nearly the
came factor of proportionality within the tip Mach cones.

The proportionality constant between the pressure distributions for
rolling and yawing motiong may be determined by a compaerison of Ghe cases
of rolling and yawing in column 4 of table I The pressure coefficient
per unlt yawing velocity is seen to be «/B° times the pressure coeffi—
clent per unit rolling welocity, or
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<ACP>Yawins ) :—:; (M}E)Rolling (18)

where equation (16) wlll apply over the whole wing.

Derivative Clr.-— The preceding analysis indicated" that the pressure
distribution per unit yawing velocity 1s in a simple ratio to that
produced per unit rolling velocity (equation (16)). Thus

a
Cy =—¢C

The derivative C,; has been derived previously and is given in table IT.
p

Derivatives CY and Cnr — When the wing yaws, the antisymmetrical

pressure distribu'bion which is Indicated by equa'bion (15) will produce
unbalanced suction forces at the right and left wing tips and thereby
glve rige to lateral forces and yawing momentg. In addltion, skin frictlon

will contribute a yewing moment.

It appears that a reasonable although epproximate evaluation of the
tip suction forces In yawing can be obtained by meens of the correspondence
of yawing with rolling as utilized previously in deriving equation (16).
This procedure does not satisfy the Kutta—Joukowskl requirement in the
sldeslip component of the stream velocity in yawing; however, this
theoretlcel deviation is likely to be very small in the actual flow. On
the basis of these considerations, the induced suction forces on 'bhe

wing tips per unit yawing velocity will be related in the ratio —2- to
B

the corresponding induced suction forces per unit rolling velocity which

were derived previously (section entitled "Derivatives CYP and Cnp").
The contributions of the tip suction forces to Cy  and Cnr are,
r 1

therefore,
a
% = 5 Or,
and
a
= — C
CnT:L B2 "p

where CY and. Cnp are given In table IT.
iy
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The effect of skin friction on the yawlng moment due to yawing is

N2=cosmf_zf:cbog[(v )P +r<—— )][6—9->B+y]dxdy‘

where the first bracketed term expresses the square of the resultant
local velocity and B 1s the local angle of sideslip:

v .

Flimingting second—order terms and terms corresponding to symmetrical
drag forces and converting N, to coefficient form yields

. RESULTS AND DISCUSSION

As noted in the preceding analysis ,» the nondimensional stability
derivatives which are presented in table IT were derived with reference

to principal body axes with the origin at point 5 20,0 These results
may be transformed by meaens of the equations in the last columm of
table IT to apply to stebility axes with the origin at an arbitrary

distance Tog from the midchord polnt. The stabllity axes are shown

in figure 2(b) and are obtained by a rotation of the principal body

axes (fig. 2(a)) through an angle «; the origin is then shifted a
distence x;, along the new x—axis. The conversion to stability axes

was obtainedgby means of the transformation formilas given in reference 16,
with the omission of relatively u.njmporba.nt terms compa.red to unity,

such as o-.

The formilas for the derivatives given in table II with reference to
principal body axes are shown plotted in figures 4 and 5 against the

[} .
parameter AB. (Derivative —Cxu and those derivatives equal to zero

are cmitted from the. figures.> These curves.show the variation of the

stablility derivatives with aspect ratio for constent Mach number. The
variation with Mach number for constant aspect ratio is not directly
indiceted, although it can be determined from the curves. These data
are shown in figure 4 for the lateral stability derivetives and in

e e v s o e e
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Pigure 5 for the longitudinel stebllity derivatives. The deta in

figures 4 and 5 are to be used in conjunction with the transformation

. Pormulas presented in table IT.to evaluate the derivatives wlth respect

to stability axes. In the evaluation of these derivatives, many of the
terms are likely to be relatively small; therefore, the expressions will be
noticeably simplified when such terms are neglected in the computations.

The results of the present Investigation have been derlved on the
assumptiong of zero thickness and small disturbances. Potentiel flow is
assumed except in the case of Cﬂr and CEI iIn which skin friction is

considered. The practical effects of the Kutta—~Joukowskl requirements
which are introduced at the wing tips In sideslip and yawing are not
definitely known. On this basis, the data shown in figures L and 5 are
expected to apply In general to thin wing sections for small steady
motions, motions with small acceleratlons, or oscillatory motlons of
low frequency in which boundary—layer effects are not expected to be
Important. The applicebility of the present theory to Mach mumbers in
the vicinity of unity, very high Mach numbers, or for very low aspect
ratios 1s uncertain.

The cla.ta3in figure 4(a) show that at supersonic speeds the
B3¢
Y is negative in conbtrast with the behavior at subsonic

derivative
a

speeds where positive values would be obtained. This phenomenon was
polnted out for the infinltely long wing In reference T and 1ts physical
significance elaborated upon. For stability axes, the formmla for 07'1"
(teble IT) indicates that another reversal in sign to a positive value
occurs as the Mach mumber is increased beyond approximately 1.4l for
typical rectengular wings. (Alsc sse reference 7 for the infinitely

long wing.)

The suction force at the leading edge of rectangular wings venishes
at supersonic speeds. This Pactor should have an importent influence on

the derivatives Cnp and Cnr as supersonlc speeds are attalned. In

the case of Cnp' (stability axes), the results of the present analysis

indicate that at supersonic speeds the sign of Cnp' wlll have positive

velues in many typlcal cases In contrast to megative values normally
obtained at subsonic speeds. In the case of CDT or Cnr’, the loss of

leading—edge suction tends to be compensated by the spanwlse compressi—
bility effects assoclated with supersonic speeds.

As noted previously in the analysis, the Kutta—Joukowskl condition
is unlikely to be satisfied along the trailing wing tip for a typically
rounded wing tip at small engles of sideslip. Therefore, the results
for C'LB in figure 4(a) are applicable where the Kutta—Joukowskl
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condition along the wing trailing edge is not patisfied. In order to
determinq the effect an CZB of satlefying the Kutta—Joukowski condition

along the trailing wing tip, the formule for CZB which meets this
requirement was also obtained and is as follows:

Cyp = afl 3+232>
B 132 3A.232

A comparison of this formila with the data for Cy, glven in Pigure L(a)

Indicates that the effect of satlsfying the Kubtta—Joukowski condition
along the trailing wing tip reduces negatively the values of C,; from

those obtained by neglecting the RKutta—Joukowski conditionm. ForBem.mple
for B=1 and AB = 4, when the Kutta—Joukowskl condition along the
tralling wing tip is neglected, CIB = —0.083a; and when the Kutta—Joukowski

condition is satlsfied along the tralling wing tip, CZB = 0.146q. Thus,

it is expected that when the sideslip angle becomes large, the dihedral
effect _CZB should be reduced significantly because of the Kutta—

Joukowskl condition along the trailing wing tip.

The longitudinal stebility derlvatives in figure 5 refer to an
axis whose origin is located at the midchord point. The date in figure 5(b)
for B show that rectangular wings, with reference to this origin,
have an reasingly umstable pitching moment with decreasing aspect
ratio which corresponds to a forward shift in the aerodynamic cemter.
For Infinite aspect ratio, the aerodynamic center is located at the
midchord point or cha = 0. If the aspect ratio is dscreased to a

value of 4 for a Mach number of 1.41, figure 5 indicates a Fforward
shift of the aerodynamic center of 0.025 chord. With constant Mach
number, the ratio ZBCIEICL /—EBCZG is obtained from figure 5 solely as a

function of AB. These data indicate that with constent aspect ratio
end increasing Mach mumber, the aesrodynsmic center will ghift rearward.
For an aspect ratio of 4, an increase in Mach number from 1.} to 1.9 will
shift the aerodynemic center rearward 0.0l chord.

The derivative _CZEL given in teble II for infinite aspect ratio

is negatlve which indicates negative dampling or Instebility. The
ratio _Cma _CZo'c from table IT glves the location of the center of pressure

of the resultant 1ift contributed by &. By teking this ratio for
infinite aspect ratlo, the center of pressure 1s found to be located at

& point %-c behind the leading edge. The negative damping produced
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by &, therefore, gives an unstable pitching moment for center—of—
gravity locations shead of x = % c. These unstable tendencles caused
by & eare minimized by the effects of finige span and the instability
M + 1
due to Cy. disappears entirely if AB ..<_. .
o 3

CONCLUSIONS

A theoreticel investigatlon has been made by means of the linearlzed
theory to obtain formmlas for the surface—veloclity-potentlal functions,
surface~pressure distributions, and stabllity derilvatives for verious
motions at supersonic speeds for rectangular wings of zero thickness
without dihedral. The investigation Included steady and accelerating
vertical and longltudinal motlons and steady rolling, yawling, sldeslipping,
and pitching for Mach mmbers and aspect ratlos greater than those for
which the Mach line from the leading edge of the tlp section Intersects
the trailllng edge of the opposite tip sectlon.

The following significant concluslons have been obtalned for this
Investigation:

1. At supersonic speeds for Mach nmumbers smeller then approximately
1.41, positive yawing generally results in a negative rolling moment in
contrast to the behavior at subsonic speeds where a positive rolling
moment 1s produced.

2. The attalnment of supersonlc speed produces a significant change
in the posltive dlrection of the yawing moment per unit rolling velocity.

3. For infinite aspect ratio, a constant vertical acceleration
causes a negavive damping In the vertical motlion, and an unstable pltching

moment for center—of—gravity locatlons ghead of the %-chord. polnt.

These wmstaeble tendencies are minimlzed by the effects of finlte span
and the instablility due to the rate of change of 1ift with vertical accelera—

2
tion dissppears entirely if A\’M2 ~ 1 =<-_}£—;—l where A 18 the aspect
retio end M is the Mach number.

Langley Aeronautical Laboratory
National Advisory Committee for Aeronsutics
Langley Field, Va., June 30, 1948
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TAELE IX.- STARILITY DEFIVATIVZS (F THIN FLAT FECTANGUIAR WINGS WITHOUT IIEEURAL AT SUEERSONIC SPEEIS
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Figure 1.- Axes and notation used in analysis,
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v,Y
u,X
p,L q,M

r,N

w,Z

(a) Principal body axes. Origin at center of wing.

"z

(b) Stability axes. Origin at point (%—xcg,o ,o) .
Principal body axes dotted for comparison.

Figure 2.- Velocities, forces, and moments relative to principal body and
. stability axes. ’
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Figure 3.- Region of integré.tion for obtaining supersonic velocity-potential
function for rectanguldr wing of finite wing span. Region of integration
for point (x,y,) shown crosshatched; y, = y -'h on right half-wing;

Yo = -y - h onleft half-wing.
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Figure 4.- Variation of supersonic lateral stability derivatives with aspect

ratio-Mach number parameter. Derivatives with respect to principal
body axes; thin flat rectangular wing; no dihedral. (See table II for
conversion to stability axes.)
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(b) Yawing-moment-coefficient derivatives.

Figure 4.- Continued.
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Figure 4.- Concluded.
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Figure 5.- Variation of supersonic longitudinal stability derivatives with aspect
ratio-Mach number parameter. Derivatives with respect to principal body

axes; thin flat rectangular wing. (See table II for conversion to stability
axes.)



